341 research outputs found

    Battery choice and management for New Generation Electric Vehicles

    Get PDF
    Different types of electric vehicles (EVs) have been recently designed with the aim of solving pollution problems caused by the emission of gasoline-powered engines. Environmental problems promote the adoption of new-generation electric vehicles for urban transportation. As it is well known, one of the weakest points of electric vehicles is the battery system. Vehicle autonomy and, therefore, accurate detection of battery state of charge (SoC) together with battery expected life, i.e., battery state of health, are among the major drawbacks that prevent the introduction of electric vehicles in the consumer market. The electric scooter may provide the most feasible opportunity among EVs. They may be a replacement product for the primary-use vehicle, especially in Europe and Asia, provided that drive performance, safety, and cost issues are similar to actual engine scooters. The battery system choice is a crucial item, and thanks to an increasing emphasis on vehicle range and performance, the Li-ion battery could become a viable candidate. This paper deals with the design of a battery pack based on Li-ion technology for a prototype electric scooter with high performance and autonomy. The adopted battery system is composed of a suitable number of cells series connected, featuring a high voltage level. Therefore, cell equalization and monitoring need to be provided. Due to manufacturing asymmetries, charge and discharge cycles lead to cell unbalancing, reducing battery capacity and, depending on cell type, causing safety troubles or strongly limiting the storage capacity of the full pack. No solution is available on the market at a cheap price, because of the required voltage level and performance, therefore, a dedicated battery management system was designed, that also includes a battery SoC monitoring. The proposed solution features a high capability of energy storing in braking conditions, charge equalization, overvoltage and undervoltage protection and, obviously, SoC information in order to optimize autonomy instead of performance or vice-versa

    Bile analysis in heroin overdose.

    Get PDF
    Following its metabolism in the liver, morphine and its metabolites can be directly eliminated in bile. Then, they undergo the enterohepatic cycle (EHC) and mostly reappear in the circulation. We report a case showing the presence of morphine in bile (21.3 lg \u2044 mL) and hair (4.8 ng \u2044mg) but not in blood, urine or the liver of an addict who survived in hospital for about 144 h (6 days). These data would indicate that the EHC does not play any role about 144 h after the last injection, and directly confirms that gall bladder is a storage depot for morphine. They constitute the first report of a demonstration of the effect of the EHC on morphine bioavailability in an addict, and could be considered as indication, without supporting circumstantial evidence, that the morphine level in bile is related to chronic opiate use

    Phytoextraction of arsenic, nickel, selenium and zinc from sewage sludge: from laboratory to pilot scale

    Get PDF
    Aims The present study aimed at: (i) verifying the suitability of pure sewage sludge (SS) as growing medium for the hyperaccumulator species (Pteris vittata, Odontarrhena chalcidica, Astragalus bisulcatus and Noccaea caerulescens); (ii) evaluating the removal of As, Ni, Se and Zn operated by the chosen species; (iii) estimating the potential metal yields (bio-ore production) and connected monetary rewards in a small-scale field experiment. Methods Hyperaccumulator plants were first tested under controlled conditions, on three different SS (P1, P2, P3) characterized by the presence of one or more contaminants among As, Ni, Se and Zn. P1 sludge was then chosen for a small-scale field experiment. Hyperaccumulator seedlings were transferred on SS and cultivated for 16 weeks before harvesting. Results All hyperaccumulator species grew healthy on P1 SS, with A. bisulcatus and O. chalcidica reaching an average biomass of 40.2 and 21.5 g DW/plant. Trace metal concentrations in aerial parts were: As (P. vittata) 380 mg/kg DW, Ni (O. chalcidica) 683 mg/kg DW, Se (A. bisulcatus) 165 mg/kg DW, Zn (N. caerulescens) 461 mg/kg DW. The total removal of As, Ni, Se and Zn from SS due to phytoextraction was 5.8, 19, 18, 29% respectively. Conclusions This study demonstrated that phytoextraction can be applied to SS for the removal contaminants while recovering valuable metals. Se and As were identified as the most promising target element, while Ni and Zn removal was poorly efficient under the present experimental conditions

    Molecular Mechanisms Mediating Retinal Reactive Gliosis Following Bone Marrow Mesenchymal Stem Cell Transplantation.

    Get PDF
    A variety of diseases lead to degeneration of retinal ganglion cells (RGCs) and their axons within the optic nerve resulting in loss of visual function. Although current therapies may delay RGC loss, they do not restore visual function or completely halt disease progression. Regenerative medicine has recently focused on stem cell therapy for both neuroprotective and regenerative purposes. However, significant problems remain to be addressed, such as the long-term impact of reactive gliosis occurring in the host retina in response to transplanted stem cells. The aim of this work was to investigate retinal glial responses to intravitreally transplanted bone marrow mesenchymal stem cells (BM-MSCs) to help identify factors able to modulate graft-induced reactive gliosis. We found in vivo that intravitreal BM-MSC transplantation is associated with gliosis-mediated retinal folding, upregulation of intermediate filaments, and recruitment of macrophages. These responses were accompanied by significant JAK/STAT3 and MAPK (ERK1/2 and JNK) cascade activation in retinal Muller glia. Lipocalin-2 (Lcn-2) was identified as a potential new indicator of graft-induced reactive gliosis. Pharmacological inhibition of STAT3 in BM-MSC cocultured retinal explants successfully reduced glial fibrillary acidic protein expression in retinal Muller glia and increased BM-MSC retinal engraftment. Inhibition of stem cell-induced reactive gliosis is critical for successful transplantation-based strategies for neuroprotection, replacement, and regeneration of the optic nerve.This work was support by funding from the Biotechnology and Biological Sciences Research Council (BBSRC), the HB Allen Charitable Trust, the Cambridge Eye Trust, the Jukes Glaucoma Research Fund and by Pfizer, Neusentis. We thank Dr. Andras Lakatos from the University of Cambridge (UK) for donating the GFAP-STAT3 CKO mice, Prof. Verdon Taylor from the University of Basel (CH) for the Hes5 GFP+ve mice, Dr. Stefano Pluchino from the University of Cambridge (UK) for donating the mouse neural precursor cell (NPC) line and Prof. Astrid Limb from UCL, London (UK) for the MIO-M1 cell line.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/stem.209

    Enzymatic digestion of calf fleshing meat by-products: Antioxidant and anti-tyrosinase activity of protein hydrolysates, and identification of fatty acids

    Get PDF
    open7noThis research was funded by Italian Ministry of Education, University and Research, National Project Cluster Agrifood SO.FI.A. (SOstenibilità della FIliera Agroalimentare) (2013–2017, Grant Number CTN01_00230_450760).The food waste reduction through an efficient recovery of its valuable building molecules has become an important topic with a positive effect on the economy and the environment. In this work, the revalorization of slaughterhouse calf fleshing meat through its enzymatic hydrolysis is proposed. The proteolytic activity of 11 enzymes was initially screened and the four most efficient enzymes (papain, trypsin, pancreatin, and bromelain) were selected. The molecular profiling of the different protein/peptide fractions by the Linear Trap Quadrupole-OrbiTrap technique showed compositional differences due to the specificity of the enzymes’ cleavage sites. In order to find a potential reuse of these hydrolysates, the analysis of antioxidant and, for the first time on fleshing meat hydrolysates, of anti-tyrosinase activities, was performed. Papain-digested samples were those showing the highest inhibition activity of tyrosinase enzyme (55.6%) as well as the highest antioxidant activity (3.52 g TEAC/L). In addition, the composition analysis of the lipid fraction was performed. The mono-unsaturated fatty acids resulted to be the most abundant lipid in all the samples with the exception of pancreatin-treated hydrolysates in which poly-unsaturated fatty acids were predominant. The present results seemed to support a possible valorization of isolated fractions from calf fleshing by-products, as food or feed ingredients, by the implementation of fraction isolation within the meat-processing pipeline.openTedeschi T.; Anzani C.; Ferri M.; Marzocchi S.; Caboni M.F.; Monari S.; Tassoni A.Tedeschi T.; Anzani C.; Ferri M.; Marzocchi S.; Caboni M.F.; Monari S.; Tassoni A

    Extraction and chemical characterization of functional phenols and proteins from coffee (Coffea arabica) by-products

    Get PDF
    open12siNot all the coffee produced goes to the roasting stage, because non-compliant green coffee beans are usually discarded by roasters and the silverskin of the coffee is usually removed and discarded. In the present work, non-compliant green coffee beans and coffee silverskins were fully characterized from a chemical point of view. In addition, enzyme-assisted extraction was applied to recover a fraction rich in proteins and polyphenols, tested for antimicrobial, antityrosinase, and antioxidant activities. Non-compliant green coffee beans showed higher amounts of polyphenols, flavanols, flavonoids, and caffeine than coffee silverskins (which were richer in tannins). The enzy-matic extraction of non-compliant coffee green beans produced extracts with a good protein content and with a consistent quantity of polyphenols. The extract showed antioxidant, antityrosinase, and antimicrobial activity, thus representing a promising strategy to recover defective green coffee beans. The antioxidant and antimicrobial activity of coffee silver skins is lower than that of non-compliant coffee green beans extracts, while the antityrosinase activity is comparable.openPrandi B.; Ferri M.; Monari S.; Zurlini C.; Cigognini I.; Verstringe S.; Schaller D.; Walter M.; Navarini L.; Tassoni A.; Sforza S.; Tedeschi T.Prandi B.; Ferri M.; Monari S.; Zurlini C.; Cigognini I.; Verstringe S.; Schaller D.; Walter M.; Navarini L.; Tassoni A.; Sforza S.; Tedeschi T

    State-of-the-art production chains for peas, beans and chickpeas\u2014valorization of agro-industrial residues and applications of derived extracts

    Get PDF
    The world is confronted with the depletion of natural resources due to their unsustainable use and the increasing size of populations. In this context, the efficient use of by-products, residues and wastes generated from agro-industrial and food processing opens the perspective for a wide range of benefits. In particular, legume residues are produced yearly in very large amounts and may represent an interesting source of plant proteins that contribute to satisfying the steadily increasing global protein demand. Innovative biorefinery extraction cascades may also enable the recovery of further bioactive molecules and fibers from these insufficiently tapped biomass streams. This review article gives a summary of the potential for the valorization of legume residual streams resulting from agro-industrial processing and more particularly for pea, green bean and chickpea by-products/wastes. Valuable information on the annual production volumes, geographical origin and state-of-the-art technologies for the extraction of proteins, fibers and other bioactive molecules from this source of biomass, is exhaustively listed and discussed. Finally, promising applications, already using the recovered fractions from pea, bean and chickpea residues for the formulation of feed, food, cosmetic and packaging products, are listed and discussed

    Ultrasound approach as integration of gross anatomy educational path for medical students

    Get PDF
    For physicians, the human body is the focus of investigation and intervention on a daily basis. It follows that the study of anatomy will continue to be essential to safe medical practice [1]. Anatomical education represents the cultural path that includes the best coexistence of old techniques, and avant-garde. Thus teachers forming future physicians are imposed to find new strategies for the acquisition of adequate professional competences [2]. The gross anatomy course attended by medical students was integrated by ultrasound training. Students were trained either in palpating and recognizing surface body-landmarks, or in the detection of different viscera. Their abilities were then evaluated. For three academic years (since 2009-10 to 2011-12), all the 262 students enrolled in the first year of Medicine and Surgery degree (“San Paolo” Hospital, Università degli Studi di Milano, Italy) participated. Of them, 16 volunteered in 2009-10, and 17 in each of the next two years, to preliminarily attend ultrasound training that their fellows would attend later. After this preliminary training, volunteers tutored their course fellows as peer tutors. All participants were either models or users. Each training presented three modules: 1) information about ultrasound scanning; 2) musculoskeletal system, major arterial and venous vessels, major nervous trunks, thyroid gland; 3) most thoracic, abdominal and pelvic viscera. Modules 2 and 3 were attended by small groups (6 students, assisted by 2 peer tutors). In module 2, topographical anatomy and subsequent recognition and palpation of surface bodylandmarks were also taught. The study of musculoskeletal system, major vessels and nerve trunks, and thyroid gland was supported by a multi-frequency probe equipped ultrasound machine. Thoracic, abdominal, and pelvic viscera were explored by a new generation pocket-sized ultrasound machine. Acquired skills were verified. The levels of expertise obtained by peer tutors and students were generally satisfactory. Students understood the importance of operative knowledge in human anatomical context. Anatomists found a valid method to consolidate the professionalizing quality of the topic

    Bioprospecting on invasive plant species to prevent seed dispersal

    Get PDF
    The most anthropized regions of the world are characterized by an impressive abundance of invasive plants, which alter local biodiversity and ecosystem services. An alternative strategy to manage these species could be based on the exploitation of their fruits in a framework of bioprospecting to obtain high-added value compounds or phytocomplexes that are useful for humans. Here we tested this hypothesis on three invasive plants (Lonicera japonica Thunb., Phytolacca americana L., and Prunus serotina Ehrh.) in the Po plain (northern Italy) which bear fruits that are highly consumed by frugivorous birds and therefore dispersed over large distances. Our biochemical analyses revealed that unripe fruit shows high antioxidant properties due to the presence of several classes of polyphenols, which have a high benchmark value on the market. Fruit collection for phytochemical extraction could really prevent seed dispersal mediated by frugivorous animals and produce economic gains to support local management actions

    Combining E-Nose and Lateral Flow Immunoassays (LFIAs) for Rapid Occurrence/Co-Occurrence Aflatoxin and Fumonisin Detection in Maize

    Get PDF
    The aim of this study was to evaluate the potential use of an e-nose in combination with lateral flow immunoassays for rapid aflatoxin and fumonisin occurrence/co-occurrence detection in maize samples. For this purpose, 161 samples of corn have been used. Below the regulatory limits, single-contaminated, and co-contaminated samples were classified according to the detection ranges established for commercial lateral flow immunoassays (LFIAs) for mycotoxin determination. Correspondence between methods was evaluated by discriminant function analysis (DFA) procedures using IBM SPSS Statistics 22. Stepwise variable selection was done to select the e-nose sensors for classifying samples by DFA. The overall leave-out-one cross-validated percentage of samples correctly classified by the eight-variate DFA model for aflatoxin was 81%. The overall leave-out-one cross-validated percentage of samples correctly classified by the seven-variate DFA model for fumonisin was 85%. The overall leave-out-one cross-validated percentage of samples correctly classified by the nine-variate DFA model for the three classes of contamination (below the regulatory limits, single-contaminated, co-contaminated) was 65%. Therefore, even though an exhaustive evaluation will require a larger dataset to perform a validation procedure, an electronic nose (e-nose) seems to be a promising rapid/screening method to detect contamination by aflatoxin, fumonisin, or both in maize kernel stocks
    • 

    corecore